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LIQUID CRYSTALS, 1986, VOL. 1, No. 5 ,  473-482 

Point-like impurity4islocation interactions in smectic A liquid crystals 

by L. LEJCEK 
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 

180 40 Prague 8, Czechoslovakia 

(Received 4 April 1986; accepted 22 June 1986) 

The displacement field created in the neighbourhood of a point-like impurity, 
its self-energy and point-like impurity-dislocation interaction are calculated for a 
smectic A liquid crystal in the approximation of small deformations. The binding 
energy of a point defect to an edge dislocation is also estimated. The use of the 
Peach-Kochler formula as a basis for the calculation of the dislocation interaction 
with other defects is discussed. 

1. Introduction 
Linear defects, such as dislocations and disclinations, in layered liquid crystals 

have been thoroughly studied because of their clear evidence in optical microscope 
observations. A review of these studies can be found, for example, in the book by 
Kltman [l]. On the other hand, point defects are usually more localized and thus 
hardly noticeable in these observations. However, it can be assumed that liquid 
crystals can contain impurities like dust particles or complexes of foreign molecules. 
Those impurities can be either embedded into the smectic layer thus disturbing the 
molecular orientation or they can be situated between the layers to create a local layer 
curvature. 

The properties of impurities and their interaction with externally applied stresses 
in smectic A (S,) liquid crystals have been investigated in a general way [2] .  In this 
contribution the special case, namely the interaction between a point-like impurity 
and dislocations in a S, is presented. We assume such a point impurity which, situated 
between the layers, does not disturb the structure of a single layer in a SA liquid 
crystal. This study is based on the use of the elastic free energy density,f,,, of a SA 
liquid crystal. The energy density is taken to have the form 

f,, = “($7 2 + ($7 + 2(&)]  + ;(gJ 
Here the function u = u(x,y,z) describes a small displacement of S, layers in the 
direction of their normal, chosen along the z direction. The elastic properties of a 
smectic A liquid crystal are described by the constants K and B. 

Expression ( 1 )  is the isotropic limit of the part of the free energy density of a 
smectic C liquid crystal which describes the deformation energy connected with layer 
curvature [3]. The free energy density (cf. equation (1)) differs from the expression 
usually used for the elastic part of the S, free energy density 
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474 L. LejEek 

which will be called the classical result by the term 

In calculations of total elastic energy E, 

the term Ac, can sometimes be important thus giving a difference between the total 
energies calculated using equation (1) or (2) in expression (4) as shown by Kleman and 
LejEek [4] and discussed recently by Dahl and Lagerwall [5]. However, expression Ael 
is a divergence term and thus does not influence the equilibrium equation for bulk 

which follows from the variation of expression (4) with (1) or (2). The importance of 
the term Ael on the elastic interaction energy between defects in S, liquid crystals and 
its connection with the use of the Peach-Koehler formula for configurational forces 
acting on defects is discussed in the Appendix. 

By analogy with solids, stress components ci3 ( i  = 1,2,3) acting on a smectic A 
layer can be introduced [l] in the form 

The stresses oSj are the same for both S, free energy densities in equations (1) and (2) 
and equation ( 5 )  is equivalent to the expression 

ao13 aoZ3 ao33 
__ + - + -  = 0. 
ax ay aZ 

2. Isolated point-like impurity 
Let a point-like impurity be situated at  the origin of the coordinate system. The 

introduction of this point impurity between S, layers (cf. figure 1) leads then to the 
local change of volume, 6 V .  The solution corresponding to this point impurity should 
follow from the equilibrium equation ( 5 )  valid in the total space with the exception 
of the coordinate origin. Equation (9, rewritten in the form 

(A + &)(A - &) u = 0, 

where Z = z / A  and A = ( K / S ) ’ ” ,  can be solved generally using, for example, de 
Gennes method [6]. Here we investigate the properties of the simplest solution u p  
which fulfils the equations 

k - - i ) u p  = o for z > o  

(A + $ ) u -  = o for z < 0. 

(8 a) 

(8 b) 

and 

At the coordinate origin the solution u- should have a singularity of the S-function 
type. 
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Smectic A: dislocation-impurity interaction 475 

‘t 

- 
Figure 1. A small point-like impurity between smectic A layers, an example of a point-like 

impurity with a spherical shape. 

The solution with the desired singularity can be written in the form 

2Az (9) 
C 

u-(x,y,z) = -exp[-(x2 + y2)/4Alz1], 

with c an arbitrary constant, the connection of which with 6 V will be shown later. The 
displacement u- given by equation (9) has the same form as the Green function of 
equation (8) found in [2]. The other simple solution which holds for equation (8 a)  for 
z < 0 and for equation (86) for z > 0 is 

C 
u+(x,y,z) = G e x p [ ( x 2  + y2)/4Alzll. 

The function u+ becomes infinite far from the origin and thus it does not represent 
a small inclusion or a point-like impurity at the origin. 

The volume change 6 V in a smectic liquid crystal surrounding the point impurity 
described by a displacement u is defined as 

bV = jsudS,  

where S is a closed surface enveloping the point impurity. For the point impurity 
described by the solution u p  the cylindrical closed surface of radius R and limited at 
z = 2 zo can be chosen. Then in cylindrical coordinates x = rcos 4, y = r sin 4, 
z = z the volume change 6V can be expressed as 

6V = j oRrd r j rd ip [u - ( r , z  = zo) - up(r,z = - z o ) ] ,  

for R2 % 411z01 it is exp( - R2/4A1z,I) % 0. Then 6V = 4nc for all cylindrical sur- 
faces with radii R > 2(AzO)”* and zo > 0. 

The energy E, in smectic A liquid crystals due to the introduction of a point-like 
impurity between the layers can be calculated using expressions (l) ,  (4) and (9). In 
cylindrical coordinates the energy E, is given by 

E, = - ”* 8A2 c’ dip Jo+m r dr Jo+I dz Q(r, z), (1 1) 
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476 L. LejEek 

where 
Q(r,z) = (3 - 212 3r2 + &)exp( - L ) / z 4 .  

21121 

The integrals in (1 1) are infinite for r + 0 or z + 0. By introducing cut-off parameters 
r, and 5 in integrals over r and z, respectively, we can calculate E, given by (1 1) 
approximately as 

E, % $ jr drp ;[ rdr dzQ(r,z) + r dr dz Q(r ,  z), 

The parameters ro and 5 characterize a cylindrical surface with volume 6V = 25(2nr;) 
which approximates a point-like impurity, Assuming cylindrical symmetry of the 
problem induced by the smectic layered structure a point-like impurity is equivalent 
to an infinitesimal dislocation loop [7] with Burgers vector b = 25 and surface 6 A .  
This equivalence can be expressed by taking c equal to (56A/2n) in equation (9). The 
same displacement as given by equation (9) can be obtained by integration of the 
general expressions given by Kltman [ l ,  81 and based on the use of the Green function 
of equation (5). 

3. Screw dislocatiowpoint-like impurity interaction 
The interaction energy El between a dislocation and a point-like impurity in 

smectic A liquid crystals can be expressed as 

as seen from equations (5) and (1) with an inserted displacement u = uD + M I .  The 
components uD and ui are the displacements due to a dislocation and an impurity, 
respectively. 

The screw dislocation along the z axis with Burgers vector b creates in its neigh- 
bourhood the displacement uD = (b/27c) arctg ( y / x ) .  Displacement u' of the impurity 
situated close to the point with coordinates (x , ,y , ,O)  follows from equation (9) as 

Because auD/dz = 0 the integration in equation (13) over z in the interval 
z E ( -  co, + co) gives zero because u'(x,  y ,  z) = - u'(x, y ,  - 2). For this reason there 
is no interaction energy between a straight screw dislocation and an impurity. The 
total force by which an impurity acts on a dislocation is also zero. However, according 
to Kleman [ l ]  the local force on the element of a screw dislocation can be non-zero 
as seen from expressions (6) with u = ui .  It should be noted that the local force acting 
on the dislocation element has the tendency to transform locally a straight screw 
dislocation to a helicoidal shape. The mechanism of such a helical instability of a 
screw dislocation is the same as that proposed by Kleman [9] and confirmed exper- 
imentally in [lo]. The change of dislocation shape investigated in [9] is caused by a 
volume dilatation or compression of an edge dislocation situated near that of a screw. 
As discussed in detail in [9] this helicoidal shape change of the dislocation also leads 
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Smectic A: dislocation-impurity interaction 477 

to the increase of the dislocation line tension which cannot be neglected although the 
self-energy of a straight screw dislocation calculated from formula (2) is zero [8]. In 
this way the presence of impurities around a screw dislocation causes its helical 
instability and influences its line tension. 

The helical dislocation has not only a screw component but also an edge one. 
Through this edge component it interacts with the dilatation field of a point-like 
impurity as shown in the next section where a simplified case of a straight edge 
dislocation and a point-like impurity interaction is investigated. 

4. Edge dislocatioepoint-like impurity interaction 
Let an infinite edge dislocation lie along the y axis and a point-like impurity be 

situated at the point (xo, 0, zo); the Burgers vector b of dislocation is oriented along 
the z axis. The displacements uD and u' describing an edge dislocation and a point 
defect, respectively, are 

as follows from [l, 31 and 

given by expression (9). 
The interaction energy El can be found by the integration in equation (13). As 

shown in the Appendix for an edge dislocation interaction with a point-like impurity in 
a S, liquid crystal the expression of the force exerted by a point defect on a unit length 
of dislocation can be obtained from the Peach-Koehler formula (see, for example, [ 11) 

(15) I f, = b0:3, f ,  = 0, f, = - b013. 
Using equation (6) with u1 and equation (8) we obtain 

The total force of the point defect-edge dislocation interaction is 
+a0 

F, = f,dy = - 

and 
-a0 

+co 

The total force components F, and F, are related to the interaction energy E, as 
F, = - aEl/axo, F, = - aEl/azo. Then the total energy of the interaction between a 
point impurity and an edge dislocation in a SA liquid crystal is 
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478 L. LejEek 

As noted, expression (1  8) can be obtained by direct integration of expression (1 3) with 
u’ and uD given by equations (9) and (14). On the other hand, expression (18) is the 
work necessary to create a point impurity of volume 6 I/ in the dilatation stress cf, of 
an edge dislocation, i.e. 

5. Discussion 
In this contribution we have made the assumption that the structure of the smectic 

A layers is not influenced by the presence of a point-like impurity. This assumption 
is correct in our case because we investigate only a small point-like impurity in static 
equilibrium. 

The simplest solution describing the S, layer displacement u‘ caused by the 
presence of this impurity can be used further for the description of the interaction of 
this point defect with other defects in S, liquid crystals. As an example we discuss now 
the interaction of a point-like impurity with an edge dislocation. In this case the 
interaction can be calculated simply by using the Peach-Koehler formula for the 
configurational force as demonstrated in the Appendix. The force between an edge 
dislocation and a point-like impurity is non-central, as in the case of two edge 
dislocations [l 11. Generally the motion of a point-like impurity in the neighbourhood 
of an edge dislocation driven by an interaction force (cf. equation (17)) can be 
complicated. Let us simplify our discussion by assuming that the point-like impurity 
moves more easily parallel to the SA layers than in the perpendicular direction. This 
assumption is in accord with our premise of undisturbed layers. The validity of this 
assumption was also established by de Gennes [6] in his investigation of a S, liquid 
crystal flow with spherical defects and dislocations. According to de Gennes the 
friction coefficient of the cylindrical defect motion perpendicular to the layers is much 
larger than the friction coefficient of the cylinder motion in the plane of the smectic 
layers. Also an edge dislocation moves more easily by climb, i.e. along the layers than 
by slip perpendicular to the S, layers, as seen from an investigation of its core 
properties [8, 121. 

When a point-like impurity of strength c is situated between two layers at  the 
position ( x o ,  0, zo) (the exact position in they direction is irrelevant due to the infinite 
length of an edge dislocation in this direction) the equilibrium position of this defect 
with respect to the edge dislocation situated at the coordinate origin follows from the 
relation 

F, = 0 or xo = f(2,l1~,1)”~. (19) 
The stable configuration is realized at such a coordinate xo which satisfies the 
inequality 

Supposing c > 0 and b > 0 it can be shown that inequality (20) is fulfilled for 
xo = - (~AIZ~I) ’ ’~ .  So the equilibrium position of a point-like impurity with c > 0 is 
at  xo = - ( 2 , l l ~ ~ l ) ” ~  and the unstable position at  xo = (2A1~,1)”~ with respect to the 
edge dislocation with b > 0 situated in the position x = 0, z = 0. This result can be 
readily understood. A point-like impurity with c > 0 creates in its neighbourhood a 
volume dilatation. An edge dislocation with b > 0 is characterized by a volume 

a2E,/dx; > 0. (20) 
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Smectic A :  dislocation-impurity interaction 479 

Figure 2.  The equilibrium positions of point-like impurity near an edge dislocation which 
follow from the equation F, = 0 (dashed and dotted line z, = xi/24. The orientation 
of x-force components near the line z, = x,2/21 shown by the arrows corresponds to the 
case of both dislocation Burgers vector b and point-like impurity strength c positive. The 
situation is the same for the parabola zo = - xi/2L but not depicted in the figure. 

dilatation for x > 0 and a volume compression for x < 0 (cf. figure 2). So in the 
region x > 0 the point-like impurity adds more volume dilatation and thus it is 
expelled from this region by dislocation and directed toward the volume compression 
region x < 0 of dislocation. 

Thus point-like impurities have the tendency to increase their concentration in the 
edge dislocation compression region. The concentration distribution C of point-like 
impurities near an edge dislocation in a S, liquid crystal can be determined by classical 
Boltzmann statistics as (see, for example, [13]) 

C = C,exp(-E,/kT), 

where C, is the impurity concentration far from an edge dislocation, T is the absolute 
temperature and k is the Boltzmann constant. The interaction energy El of the 
dislocation-impurity interaction is given by equation (18). Again it is seen that, for 
the compression region (where El < 0), C > C, and for the dilatation region 
(El  > 0) C < C,. The concentration C where C > C, of impurities near an edge 
dislocation thus form a cloud. In this way the situation is similar to that in metallurgy 
where such a cloud is called a Cottrell cloud. 

The binding energy of the point-like impurity to the dislocation can be estimated 
by inserting into expression (18) the relation x, = - ( ~ A I Z ~ ~ ) ’ ’ ~ .  Then the binding 
energy E, is 

If zo x h/2, then E,/& z (27c/e)”’ z 1.52. 
Through this binding energy a point-like impurity can follow the climb motion of 

an edge dislocation and by its own friction force it will increase the friction of the 
dislocation climb motion in a S, liquid crystal. Using de Gennes results [6] the friction 
force, F,, acting on the spherical point impurity of radius < which moves with velocity 
V, in the x direction is F, z 871115 V,; where r]  is the viscosity. Thus for small velocities 
V,  the point-like impurity increases the dislocation friction by a value F,. 

6. Conclusions 
Using the elastic free energy density of SA liquid crystals one solution of the 

equilibrium equation giving the displacement U I  = u- (cf. equation (9)) in the neigh- 
bourhood of a spherical inclusion or a point-like impurity situated between smectic 
layers was used to investigate the dislocation-point impurity interaction. 
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480 L. LejEek 

The interaction of an edge dislocation with a point-like impurity can be described 
by the Peach-Koehler formula for the configurational force which is the same for 
both expressions ( 1 )  and (2) of the smectic A free energy density, as discussed in the 
Appendix. The interaction energy El given by formula ( 1  8) was used to estimate the 
binding energy (cf. equation (21)) of a point-like impurity to an edge dislocation. On 
the other hand, the interaction of a straight screw dislocation with a point-like 
impurity is zero. However, the presence of a point-like impurity near a screw dislo- 
cation leads to its helical shape instability thus influencing the dislocation line tension. 
The interaction between a helical dislocation and a point-like impurity can then be 
approximated by the interaction of a point-like impurity with a helical dislocation 
edge component. 

Appendix 
The interaction energy between a dislocation and another source of the internal 

stress in a smectic A liquid crystal can be expressed using equation (1 3 )  as 

El = Sdl/(div(A + B) + u ” ~ : ~ , ~ ] ,  

where the vector fields A and B are of the form 

I A 3  = 0, 

and BJ = uDcf3, (i = 1, 2, 3 ) .  Displacements uD and uE are created by a dislocation 
and another stress source, respectively. By analogy with Eshelby [14] let surface SD be 
the surface enveloping the dislocation cut half-plane as depicted schematically in 
figure 3. The volume integral (cf. equation (A 1)) can then be transformed to the 
surface integral 

A,n, dS + js, uD0F3n, dS + uD& dV. 
= h (A 3 )  

Figure 3. A schematic representation of the surface S, enveloping the dislocation cut half- 
plane x > 0. The surface S,  is composed of the upper ( S ; )  and lower ( S ; )  lip both 
connected by the cylindrical surface of radius around the dislocation line (perpendicular 
to the figure plane). The outer normal to the surface S,  is n but the inner normal (- n) 
is depicted for convenience. 
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In expressions (A 1) and (A 3) the usual summation convention over repeated indexes 
i = 1,2, 3 is adopted. The vector n in equation (A 3) is the outer normal of S,. With 
respect to the surface S,  it is convenient to express the vector field A in the unsym- 
metrical form (cf. equations (A 2)). The summation of stress component derivatives 

is the equilibrium condition for displacement uE with stress components given by 
equation (6) with u = uE. Displacement uD changes by b on S ,  and finally E, can be 
expressed as 

Comparison of the interaction energy (equation (A 4)) in a SA with the analogous 
expression in elasticity of solid crystals [14,15] shows that the derivatives of the 
integral b JSD &n, dS with respect to the position coordinates of stress source #3 give 
the configurational force acting on a dislocation. This configurational force can also 
be obtained from the well-known Peach-Koehler formula (see, for example, Eshelby 
[14], KlCman [l]). The difference between the interaction energy in a SA and in the 
classical elasticity of solids is the term f A,n,  dS. The field A is composed of 
derivatives of displacements uD and uE continuous across the cut half-plane. So the 
integral f,, A,n, dS could contribute only on the cylindrical surface of radius envelop- 
ing the line dislocation singularity at the edge of dislocation cut half-plane (cf. 
figure 3). The role of the term jSD A,n,  dS was demonstrated during the study of the 
interaction of two parallel screw dislocations in a smectic C or at the smectic A limit 
of the smectic C free energy density, by Kltman and LejEek [3]. For 

SP 

Y uD = -arctg- 
2n X 

,$(I) 

and 
b(2) y - yo 

uE = -arctg- 2n x - x, 

describing two parallel screw dislocations with Burgers vectors b(') and b(2) at 
x = y = 0 and x = xo, y = yo ,  respectively, the integral f,, A,n, dS is 

(per unit length in the z direction) where cylindrical coordinates x = ecoscr, 
y = e sincr, z = z were used, and n = (- cosct, - sincr, 0),  r2 = x i  + y i .  The term 
b J 0:9, dS does not contribute because AuE = 0. In a classical smectic A liquid 
crystal the interaction energy can be written analogously to equation (A 4) as 

E, = jSD Aln, dS + b jS, 0r3ni dS, (A 5 )  

with 
a u D  auD 

ax aY 
A; = K -  A u ~ ,  A; = K-AuE,  A;  = 0. 
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482 L. LejEek 

For a screw dislocation AuE = 0 and then E, = 0. So in a classical SA liquid crystal 
there is no interaction between parallel screw dislocations [8]. The difference between 
the expressions (A 4) and (A 5 )  is connected with the term Ae, (equation (3)) and thus 
its importance was demonstrated. 

For an edge dislocation along the y axis the dislocation displacement does not 
depend on the y coordinate. Then 

in cylindrical coordinates x = e cos c1, y = y ,  z = e sin a and n = ( - cos a, 0, - sin a). 
Using uD given by equation (14) it is [l] 

b sg (sin a) - exp (- e cos’ a / 4 ~  I sin a I), auD - -  
ax 4(71;1~ I sin ~ 1 1 ) ” ~  

which behaves as If (a2uE/dx2) has no singularity for e + 0 then 
r 

The same procedure can also be used for a classical smectic A. Thus for both SA and 
classical S, liquid crystals the interaction of an edge dislocation with the displacement 
field, uD, from the other source of stresses the interaction energy is of the form 

~1 = b js, OFjni d s ,  (A 7) 

which is equivalent to the use of the Peach-Koehler formula for the configurational 
force (1 5) .  The displacement uE can be either the displacement created by another 
parallel edge dislocation as studied in smectic A liquid crystals by Kleman and 
Williams [ I  I ]  or  u1 of a point-like impurity (see $93 and 4). 

In conclusion of this schematic analysis it should be noted that the Peach-Koehler 
formula for the configurational force cannot be simply used without further discussion 
in liquid crystals such as smectic A, smectic C or chiral smectic C whose free energy 
densities contain the powers of second layer displacement derivatives. 
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